Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.
Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.
Алгоритм решения типовых задач на нахождение вероятности
Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике. А теперь не будем ходить вокруг да около, и сформулируем примерную схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.
- Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
- Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
- Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
- происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
- если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
- событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).
Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.
- Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
- Вуаля, вероятность найдена.