Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Подробнее об основных понятиях теории вероятностей (событие, вероятность, независимость, группа событий), формулах, определениях и теоремах можно узнать из онлайн учебника по теории вероятностей, который вы найдете на нашем сайте. Еще полезные материалы для изучения: формулы по теории вероятностей, ссылки на учебники по ТВ, решенные задачи на вероятность и статья о том, как решать вероятностные задачи.

От теории вероятностей к математической статистике

Теория вероятностей изучает математические законы распределения случайных событий, и фактически является теоретической базой для математической статистики. Но, если в теории вероятностей обычно распределение задано тем или иным образом, и требуется найти вероятности, числовые характеристики (например, математическое ожидание, дисперсию и т.п.), построить графики функции и плотности распределения, то в задачах математической статистики, напротив, известны данные (выборка), собранные по результатам какого-то эксперимента или наблюдения, по которым следует определить закон распределения, наиболее подходящий в данном случае, достоверную с некоторой долей вероятности информацию о том, какими могут быть математическое ожидание или среднеквадратическое отклонение величины и т.п.

Что изучает математическая статистика?

Если говорить строго, то математическая статистика — это раздел математики, который изучеет методы сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия на их основе решений.

Почему же для обработки простых наборов данных требуется целая наука? Потом, что эти данные, как бы мы не старались, никогда не являются точными, содержат случайные ошибки. Это могут быть и погрешности измерительных приборов, и ошибки человеческие (связанные с тем, кто проводит исследование и измерение), и неоднородность данных или, конечно, их недостаточность (невозможно изучить, например, всех коров в мире, чтобы делать выводы об их удоях;), или опросить всех избирателей чтобы сделать прогноз выигрыша для кандидата на выборах).

Обычно исследователь многократно повторяет (если это физически возможно) свой опыт, получая большое количество однотипных данных, которые теперь надо обработать и сделать весомые выводы, которые позволят не только продвинуться глубже в изучении предмета (будь то удои коров или политические предпочтения), но и сделать выводы, прогнозы, принять важные экономические решения и т.д.

Именно математическая статистика дает методы для обработки данных, алгоритмы для проверки статистических гипотез, критерии адекватности и значимости выбранной модели или закона, обоснованные границы точности для параметров распределения, которые мы можем получить исходя из наших данных и т.п.

Как изучить теорию вероятностей и математическую статистику? Читайте (и прорешивайте в них примеры) учебники по математической статистике, изучите примеры решений, используйте калькуляторы по ТВ, таблицы и формулы статистикидля удобства. Онлайн решебник по теории вероятностей поможет с трудными задачами.